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What is a Fuel Cell?

 Electrochemical device that converts a fuel directly to electrical energy

N2

N2

N2

H2

H2

H2

H2

H2

H2

O2

O2

O2
H+

e- e-

Anode
Electrolyte

Cathode

O2
N2

N2

H2 + ½ O2 = H2O

E° = 1.1 Volts

O2

O2



3

Fuel Cell Types and Characteristics

Type Features Weaknesses

Alkaline (AFC) Used on Apollo and Pt electrodes
25-100ºC Space Shuttle Missions CO2 intolerant

Phosphoric Acid First “commercial” units  Low CO tolerance
(PAFC)  200ºC 200 kW units (1-2%)

Polymer-Electrolyte Quick start up Very low CO tolerance
(PEFC or PEM) Direct Methanol High Materials Cost

60-90ºC 

Molten Carbonate 2 MW units built Molten electrolyte
(MCFC)  650ºC Runs on Natural Gas is corrosive

Solid Oxide High Power Density High Temperature
(SOFC) Solid State Slow start up
800-1000ºC Fuel flexible



Polymer electrolyte fuel cells have been selected for
automotive applications

   Advantages
–   Low temperature operation  (60-90°C)
–   Non-corrosive solid-state construction
–   Quick start-up time

   Challenges

–   Hydrogen storage
–   Low tolerance to impurities in the hydrogen fuel
–   Maintaining membrane’s high proton conductivity
–   Cost of platinum catalyst, membrane production, and bipolar plate

manufacturing
–    Durability of platinum catalyst and membrane
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 Cathode is responsible for the oxygen reduction
reaction (ORR)

 ORR is limiting kinetic event (higher loadings of Pt
required compared to anode)

Pt Electrocatalyst Durability at the Cathode in Polymer
Electrolyte Membrane Fuel Cells

 Platinum cathode
catalyst is not stable
under long-term
operation.

 Electrochemically
active surface area
decreases by ~1/3 in
1000 hours.

 Pt particles can
coarsen 100 % in 500
hours

 Pt enrichment at
membrane/catalyst
interface
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 Pt dissolution of smaller particles
and redepostion onto larger
particles (3D)

 Pt coalescence via migration
across support (2D)

 Erosion of [Carbon] support

Pt Degradation Mechanism

 Analysis is often post mortem
 X-rays offer non-interacting non-

invasive in-situ spectroscopic
study of the catalyst environment
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X-ray Absorption Fine Structure (XAFS)

hν

Gives information about:-
Distances between atoms
Number of neighbouring atoms
Nature of neighbouring atoms
Changes in central-atom
coordination with changes in
experimental condition
Oxidation state of central atom
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In-situ XAFS for Pt electrocatalysts in an Aqueous Cell

It

X-ray

I0

Fluorescence
Detector If

APS

W
or

ki
ng

R
ef

er
en

ce

C
ou

nt
er

Potentiostat

In Situ
Electrochemical

Cell

O2

NOT TO SCALE!



9

Pt/C electrocatalyst in an aqueous cell
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Pt/C electrocatalyst in an aqueous cell
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Pt L3-edge XANES (0.5 V ;  anodic
0.8 V ;  anodic 1.1 V ; 1.4 V ;
cathodic 1.1 V ; cathodic 0.8 V ).

Pt loss as a function of edge-step intensity
(overall loss from initial point ; change in loss
with potential step  and weighted fit ();
potential is shown as grey histogram)

Platinum loss occurs during
anodic and cathodic-going
potential scans
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Current vs. Edge-Step

(Left) Current vs Time per cycle (Cycle 1 is orange and progesses thru to 

Cycle 6 – pink).  (Right) Loss in current at 0.5 V compared to loss in edge-

step height with respect to potential cycle. 
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Size Agglomeration

Normalized Pt L3-edge XANES
for Pt/C catalyst at different
potentials.  (Electrochemical
cycle 1 (), cycle 3 (•••), cycle 6
(• • •).  Other cycles omitted for
clarity)
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Pt3Co/C

 

0

10

20

30

40

50

60
0 1 2 3 4 5 6 7

%
 L

o
s

s
 F

ro
m

 I
n

it
ia

l 
S

ta
te

No. of Complete Potential Cycles
 

0.9

1

1.1

1.2

1.3

1.4

11560 11565 11570 11575 11580

N
o

rm
a

li
z
e

d
 A

m
p

li
tu

d
e

 (
a

.u
.)

Energy (eV)
 

Pt

Pt in Pt3Co

Co in Pt3Co

Pt loss as a function of edge step in Pt/C ;
Pt3Co/C ; and Co loss in Pt3Co/C  potential
is shown as grey histogram).

XANES at 0.8 V for Cycle
1 () and Cycle 8 (---)

Pt edge step

Pt current

Pt3Co edge step

Pt3Co current
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Small-Angle X-Ray Scattering (SAXS)
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SAXS - Aqueous Cell
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Summary

 Pt electrocatalyst loss and growth can be observed using x-ray
spectroscopies

 Loss of Pt occurs during anodic and cathodic sweeps, but is greater
during reduction, for Pt and Pt3Co

 No evidence for Pt3Co alloy being more stable than pure Pt under our
aggressive conditions
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Future Work

 Complete EXAFS analysis to provide full details on changing atomic
environment - relate to mechanism and electrochemical dissolution data

 Analysis of in-situ working fuel cell XAFS data
 Fuel Cell SAXS
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